Uniform rank gradient, cost, and local-global convergence
نویسندگان
چکیده
منابع مشابه
Uniform connectedness and uniform local connectedness for lattice-valued uniform convergence spaces
We apply Preuss' concept of $mbbe$-connectedness to the categories of lattice-valued uniform convergence spaces and of lattice-valued uniform spaces. A space is uniformly $mbbe$-connected if the only uniformly continuous mappings from the space to a space in the class $mbbe$ are the constant mappings. We develop the basic theory for $mbbe$-connected sets, including the product theorem. Furtherm...
متن کامل$G$-Weights and $p$-Local Rank
Let $k$ be field of characteristic $p$, andlet $G$ be any finite group with splitting field $k$. Assume that $B$ is a $p$-block of $G$.In this paper, we introduce the notion of radical $B$-chain $C_{B}$, and we show that the $p$-local rank of $B$ is equals the length of $C_{B}$. Moreover, we prove that the vertex of a simple $kG$-module $S$ is radical if and only if it has the same vertex of th...
متن کاملLocal linear estimating equations: Uniform consistency and rate of convergence
In this paper uniform consistency of estimators obtained from kernel based local linear estimating equations is obtained. Furthermore it is shown that the rate of convergence is at least n for a suitable choice of bandwidth. These result are used to find asymptotic results for the integral of the estimator. As an application we consider an “inverse probability of missingness reweighted estimati...
متن کاملGraph-distance Convergence and Uniform Local Boundedness of Monotone Mappings
In this article we study graph-distance convergence of monotone operators. First, we prove a property that has been an open problem up to now: the limit of a sequence of graph-distance convergent maximal monotone operators in a Hilbert space is a maximal monotone operator. Next, we show that a sequence of maximal monotone operators converging in the same sense in a reflexive Banach space is uni...
متن کاملLocal Minima and Convergence in Low-Rank Semidefinite Programming
The low-rank semidefinite programming problem LRSDPr is a restriction of the semidefinite programming problem SDP in which a bound r is imposed on the rank of X, and it is well known that LRSDPr is equivalent to SDP if r is not too small. In this paper, we classify the local minima of LRSDPr and prove the optimal convergence of a slight variant of the successful, yet experimental, algorithm of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2020
ISSN: 0002-9947,1088-6850
DOI: 10.1090/tran/8008